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Entropy becomes an increasingly important contributor to the Gibbs energy at high tempera-
tures with both non-configurational and configurational contributions to be considered. Some
examples of where configurational entropies alone are important in determining the domain of
phase stability of a solution phase are given. In phenomenological calculations, the modeling of
configurational entropy should allow for short range order and be readily applicable to multi-
component systems. The use of Fowler-Yang-Li transforms is important in this regard by pro-
viding the opportunity for changing the functional variables in cluster calculations of the Gibbs
energy from cluster probabilities or correlation functions to the considerably fewer point
probabilities, just as in the Bragg-Williams approximation.
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1. Introduction

Metallurgy students of my generation were strongly
influenced by the monographs of Prof. Hume-Rothery.[1-5]

His name will always be particularly remembered for his
work on first isolating the principal factors responsible for
the stability of alloy phases. In the first editions of these
monographs, there is no mention of any role for entropy, S,
in determining phase stability, although Gibbs energies, G,
are mentioned in the later, co-authored, editions.[6-8] The
awareness of the important contribution of S has become
much more widely recognized since then and, in this
Lecture, I will concentrate on some aspects of its role in
determining high temperature phase stability.

Although the contributions made by solid state physicists
over the last two decades in the ‘ab initio� calculation of
alloy phase stabilities has been outstanding, it seems clear
that some degree of empiricism will continue to be
important for some years to come in the evaluation and
description of high temperature phase stabilities. The
required accuracies in calculated Gibbs energies of just a
few joules per mole of alloy at temperatures in the region of
1,000 K are still some way off the accuracy attainable by

‘first principles� calculations. There is the added problem of
attempting to focus the interest of physicists on 15
component systems! In the meantime, it seems clear that
some parameterization in phenomenological descriptions
will continue to be necessary although, hopefully, the
magnitudes of the adjustable parameters required in such
modeling will become smaller with the passage of time.
Having said that, there is a clear need for the introduction of
more physics into the methodology used in the current
phenomenological calculations,[9] one which goes beyond
the embrace of ‘ab initio� calculated zero-Kelvin total
energies.

Several different contributions to the absolute entropies
of alloy phases are possible. It is well known that, in pure
metals, excitational entropy contributions often have a
significant influence on the relative high-temperature stabil-
ity of different allotropes. Entropy is much more important
than enthalpy in determining excitational Gibbs energies,
i.e., although the average excitational energy changes little
as a function of temperature, the spread of available energy
states increases substantially. Similar examples are found in
the determination of the relative stability of different
structures of stoichiometric compounds as a function of
temperature; see Colinet et al.[10]

The excitational contributions to the entropy, Sexcit, are
also present in solution and non-stoichiometric compound
phases but, in these cases, there are additional contributions
to consider, viz., contributions from atom mixing (config-
urational), Sconfig, and from topological or positional effects,
Sposn, due to local atomic relaxations and global volume
changes which arise when the atoms are of disparate size. In
the case of these phases, then, we may write the total
entropy as

S ¼ Sconfig þ Sposn þ Sexcit ðEq 1Þ

The factorization given in Eq 1 is not to say that the
different contributions can be regarded as independent. On
the contrary, we might expect some coupling between them
as when, for example, vibration excitations are influenced
by local atom arrangements, i.e., Sexcit may be influenced by
Sconfig.
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In this article we will concentrate principally on Sconfig

but, in order to emphasize the importance of the other
contributions, we first make some brief observations about
their importance.

2. Non-Configurational Entropy

For an ideal substitutional solution, the molar configu-
rational entropy of mixing is given by

DmixS
ideal ¼ �R

X

i

xi logeðxiÞ ðEq 2Þ

The values obtained from this equation, which corre-
spond with those for a random mixture, represent the upper
limit for the configurational entropy of mixing. For binary
systems, D mix S

config lies in the range

0 � DmixS
config � þ0:693 R ðEq 3Þ

where the upper limit is the value for a random equiatomic
mixture. An excess entropy of mixing, SE, is then defined as
the difference between the property of a real solution and
that for an ideal solution at the same composition:

SE ¼ DmixS � DmixS
ideal ðEq 4Þ

The values of SE for real alloys are often found to be
quite significant. As an illustration, we show some results
for fcc Au-Ni alloys in Fig. 1. These are taken from a recent
assessment for this system at 1,200 K[11] and it can be seen
that there is a substantial positive deviation from that for an
ideal binary solid solution.

Another example, which shows both the integral forma-
tion and mixing quantities is given in Fig. 2. This figure
shows integral entropy of formation, DfS, from two
assessments for Al-Ni alloys at 1,500 K.[12,13] An ordered
bcc phase is present around the equiatomic composition in
these alloys and DmixS for this phase can be obtained by

relating the plotted values of DfS for the bcc intermediate
phase to the dotted curve which refers to the entropy of the
phase-separated mixture of the pure metals with bcc
structure. It can be seen that DmixS for this phase is large
and negative.

The results shown in Fig. 1 and 2 are not atypical. A
survey from approximately 100 binary solid alloys[14]

reveals that significant positive and negative values of
DmixS, which are well outside the bounds given in Eq 3, are
very often found in binary solid alloys.

It is clear from these examples that any thermodynamic
modeling of solution phases which is based on configura-
tional entropies alone is bound, in general, to be unsatis-
factory for calculations involving real alloys. In the
following, however, we will concentrate on the importance
and modeling of the configurational contributions.

3. Configurational Entropy

3.1 Ideal Solutions

The simplest way of illustrating the effect of configura-
tional entropy of mixing on high-temperature phase stability
is summarized in the phase diagram shown in Fig. 3. The
liquid phase is taken to be ideal, the solids to be immiscible,
the melting points and entropies of fusion to be identical. It
can be seen that the liquid phase region is most extensive at
the mid-composition due to the fact that the configurational
entropy is at its maximum there.

The upper limit of DmixS
config = + 0.693R for a binary

system can be substantially exceeded in multicomponent
alloys, as can be seen in the plot shown in Fig. 4, which
results from using Eq 2 for different numbers of compo-
nents. It can be seen that, in a ten-component system, the
value of DmixS

config can reach more than three times its value
in a binary system.

Fig. 1 Values for DmixS for solid alloys for the fcc Au-Ni al-
loys at 1200 K taken from the assessment of Liu et al.[11]

Fig. 2 Values for DfS for solid alloys for the Al-Ni system at
1,500 K taken from two assessments.[12,13] The dotted line is for
the phase separated mixture of bcc pure metals from which
DmixS can be obtained for the bcc phase present in alloys near
the equiatomic composition
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Associated with the substantial increase in the maximum
configurational entropy as the number of components
increases, there is a concomitant depression in the eutectic
temperature as can be seen in Fig. 5 and it is interesting to
conjecture as to whether the increased phase stability
brought about by configurational entropy stabilization in
multicomponent solutions could be taken advantage of in,
for example, the development of low temperature solders or
bulk amorphous alloys. One group[15-17] have already
appreciated this large effect in multicomponent alloys and
have been looking at the possibility of exploiting it. They
have made some interesting observations on the microstruc-
tures and mechanical properties of some AlCoCrCuFeNi
alloys. The high values shown in Fig. 4 are unlikely to be too
important in multicomponent alloys of general technological

interest, since these are usually based on one component
being present in a much higher concentration than the others.

The multicomponent effect may also manifest itself in a
different, and perhaps undesirable, way. If a solution phase
is metastable in a binary system and poorly described, then,
due to the multicomponent configurational entropy effect, it
may inadvertently and erroneously appear to be stable in the
multicomponent system. Something along these lines may
be occurring in the calculated presence of an fcc phase in the
ternary Cu-Sn-Ni system at low Ni concentrations (U. Katt-
ner, private communication, 2006). This phase is not stable
in the binary Cu-Sn system and it is not clear as to whether a
poor description there is responsible for it predicted
presence in the ternary.

A less obvious illustration of the effect of Sconfig

influencing the domain of stability of a solution phase is
encountered in the case of the dissolution of an interstitial
solute in a binary substitutional alloy. A specific example
arises in the case of the terminal solubility of H (TSH) in
solid solutions of Nb-Ta alloys. At a certain concentration of
H in the solid solution phase a hydride phase becomes more
stable. The experimental points shown in Fig. 6 show that
there is a significant increase in the TSH in the alloys at
250 K as compared with the values in the pure metals.

In trying to understand results like those shown in Fig. 6,
the role played by configurational entropy can be isolated by
considering the simple example where it is assumed that the
alloy host atoms, A and B, form an ideal substitutional
solution and the H dissolves as an ideal interstitial solution
in the substitutional alloy host.

In order to simplify the example further, we assume that
there is only one interstitial site per metal atom. We also
assume that, at the terminal solubility, the solid solution is
in equilibrium with hydrides of composition AH( a) on the
A-rich side and BH( b) on the B-rich side. Since AH( a) and
BH( b) have different structures they are assumed to be
completely immiscible.

Fig. 3 Binary phase diagram for a simple eutectic system. The
liquid phase is ideal; the pure solids, of identical melting points
and entropies of fusion, are completely immiscible. The extent of
the domain of phase stability of the liquid phase is determined
by the magnitude of the configurational entropy of mixing

Fig. 4 Ideal configurational entropies of mixing for multicom-
ponent alloys

Fig. 5 Illustrating the increase, brought about by configura-
tional mixing entropy, in the domain of stability of the liquid
phase in a ten-component system as compared with a binary sys-
tem. The liquid phase is assumed ideal; the solid phases are all
immiscible
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With these assumptions, the relative chemical potentials
(the following quantities are in dimensionless units) for the
three components are given by

DflH ¼ lH �
1

2
lo
H2
¼ Dfl

o
H þ loge

r

1� r

� �
ðEq 5Þ

lA � lo
A ¼ logeð1� cÞ þ logeð1� rÞ ðEq 6Þ

lB � lo
B ¼ logeðcÞ þ logeð1� rÞ ðEq 7Þ

where r = NH /(NA + NB) and c = NB /(NA + NB).
For complete equilibrium (CE) between the solid solu-

tion phase and the hydride phase (indicated by the ‘h�
superscript) the chemical potentials for all three elements are
equal in both phases:

lH ¼ lh
H ; lA ¼ lh

A ; lB ¼ lh
B ðEq 8Þ

The usual situation encountered, however, is one where
the metal atoms are essentially frozen with only the H atoms
mobile enough to be able to come to equilibrium between
the two phases. In this case of para-equilibrium (PE), the
alloy composition of the solid solution and hydride phases
are identical and the last two equations must be replaced by

ð1� cÞlA þ clB ¼ ð1� cÞlh
A þ clh

B ðEq 9Þ

Solution of Eq 5-9 gives the following equations for CE
and PE on the A-rich side:

CE : Dfl
o
H ðAÞ þ logeðrÞ þ logeð1� cÞ ¼ Df G

oðAHðaÞÞ
ðEq 10Þ

PE : Dfl
o
H ðcÞ þ logeðrÞ ¼ Df G

oðMHðaÞ; cÞ ðEq 11Þ

where

Df G
oðMHðaÞ; cÞ ¼ ð1� cÞDf G

oðAHðaÞÞ
þ cDf G

oðBHðaÞÞ þ DmixG ðEq 12Þ

Here, the a-structural form of the hydride is the stable
one on the A-rich side and B will be forced into this
structural form when PE is present.

Results for this simple case of ideal solutions are shown
in Fig. 7 and 8. The following (dimensionless) values for
the quantities involved have been used in the calculation of
Fig 6 and 8:

Df l
o
HðAÞ ¼ Df l

o
HðBÞ ¼ 0;

Df G
oðAHðaÞÞ ¼ Df G

oðBHðbÞÞ ¼ �3; for the stable forms

of the hydrides;

Df G
oðAHðbÞÞ ¼ Df G

oðBHðaÞÞ ¼ þ1; for the unstable forms:

The tie-line between solid solution and hydride for the CE
case at c = 0.3 is terminated by the two dots whilst that for the
PE is terminated by the crosses. It can be seen that there is an
enhanced solubility in the metastable PE situation.

Since we have considered the alloy to be ideal, for both
the substitutional and the interstitial components (and the
stable hydrides to be immiscible), the effects illustrated in
these figures are due solely to the increased stability of the
solid solution phase at intermediate alloy concentrations
brought about by its configurational entropy of mixing.
Topologically, the lH � c phase diagram is identical with
the T)x phase diagram illustrated in Fig. 3 for a simple
binary eutectic alloy.

The modeling of the results for a real system like H in
Nb-Ta, as shown in Fig. 6, is more complicated than the
simple case considered here, since, in the real system, both
energy and non-ideal entropies come into play.

Because of the ability of the logarithmic nature of the
configurational entropy term outweighing any finite energy
contribution, it would also seem that there should always be
an increase in TSH brought about by the addition of a

Fig. 6 Terminal solubility of H in contact with a hydride phase
in Nb-Ta alloys at 250 K. The experimental results are taken
from Ref 18.

Fig. 7 Calculated variation of the hydrogen chemical potential
at the TSH in a substitutionally ideal alloy host in which H dis-
solves as an ideal interstitial solution. The hydrides AHðaÞ and
BHðbÞ are assumed immiscible. The dashed curves refer to the
complete equilibrium phase diagram, the solid curves to the
para-equilibrium phase diagram

Section I: Basic and Applied Research

82 Journal of Phase Equilibria and Diffusion Vol. 28 No. 1 2007



substitutional solute to a host metal solvent. This appears to
be in line with experimental observations, at least for
Pd-based alloys.[19]

3.2 Athermal Solutions

Another instance of where the effects of configurational
entropy can be completely isolated arises when the energy
of mixing is zero, but the configurational entropy of mixing
is not that for an ideal solution. Such solutions are described
as being athermal.

We again consider an example involving a metal-
hydrogen interstitial solid solution. The metal, M is taken
to have the bcc structure with the H dissolving in the
tetrahedral sites, of which there are six such interstitial sites
per metal atom in the host lattice, s = 6.

If the solution is ideal, then the relative hydrogen
chemical potential for the gas/solid equilibrium is given by:

DflH ¼ RT loge
ffiffiffiffiffiffiffi
pH2

p ¼ Dfl
o
H ðTÞ þ RT loge

r

s� r

� �

þ lE
Hðr; TÞ

ðEq 13Þ

Df lo
H is the non-configurational contribution at infinite

dilution, the second term is from the ideal configurational
entropy, and the composition-dependent excess quantity,
lE
H , may contain both configurational and non-configura-

tional contributions.
DfSH, DfSH

o and SH
E can be obtained from the experimental

results via the temperature derivatives of the relevant terms
in Eq 13.

With s = 6, one might expect that the bcc phase would be
stable over a wide composition range, but this is not found
to be the case. Instead of being able to reach compositions
approaching MH6, as expected, it is found that the isotherms
for pH2 versus r rise very steeply indeed at much lower H
concentrations. It is now generally acknowledged that these

experimentally observed low H saturation concentrations for
H in bcc metals are due to large hard-core effects, i.e., there
are large short-range H-H repulsive energies which may be
of chemical and/or strain in origin. The effect, as shown
schematically in Fig. 9, is to prevent future occupation of
interstitial sites in close proximity to an already occupied
interstitial site. Thus, each occupied interstitial site is
surrounded by a ‘halo� of blocked sites, and it is the
influence of this ‘blocking� on the configurational entropy
which is principally responsible for the observed solubilities
which are lower than those expected from using s = 6 for H
in bcc metals like Zr, Ti, Nb, V and Ta.

In order to completely isolate the effect of configurational
entropy, we consider the idealized case where it is assumed
that there is an infinite repulsive energy between H atoms
inside some defined radius together with a zero interaction
energy outside this range. When the first H atom is inserted
then there will be a complete halo of blocked sites
surrounding it but, at higher H concentrations, the halos
will overlap so that the average number of blocked plus
occupied sites per inserted H atom, z, will decrease with
increasing H concentration. In the case of the blocking of the
nearest and next nearest neighbor sites for H in tetrahedral
sites in bcc metals, z varies from 7 at r = 0 to 4 at r = 1.5.

In order to simplify the model further, we assume that lE
H

is zero, i.e., that any non-configurational contributions to lH
are composition independent.

With these simplifying assumptions, the temperature
derivative of Eq 13 is modified as follows:

DfSH ¼¼ DfS
o
H ðTÞ � R loge

r

s� zr

� �
ðEq 14Þ

The analytical calculation of z is difficult and is most
conveniently carried out usingMonteCarlo simulations.[20,21]

It is known from inelastic neutron scattering measure-
ments of the optical mode frequencies for H in bcc metals
that these correspond with Einstein temperatures in the
region of 1,500 K. Actual experimental values can be used

Fig. 8 Calculated variation of the TSH in a substitutionally
ideal alloy host in which H dissolves as an ideal interstitial solu-
tion. The hydrides AHðaÞ and BHðbÞ are assumed immiscible.
The dashed curves refer to the complete equilibrium phase
diagram, the solid curves to the para-equilibrium phase diagram

Fig. 9 ‘Halo� of blocked sites around an already occupied inter-
stitial site due to large short-range H-H repulsive energies

Basic and Applied Research: Section I

Journal of Phase Equilibria and Diffusion Vol. 28 No. 1 2007 83



in the calculation of SH
o in the metal which, together with the

gas phase properties, gives DfSH
o . When Eq 14 (with s = 6

and blocking of nearest and next nearest neighbors) is used,
the curve shown going through the points in Fig. 10 is
obtained. If, on the other hand, it is assumed that s = 1 and
that no blocking occurs, together with the same value of
DfSH

o , then the lower curve is obtained. As can be seen, the
results calculated in this way are unsatisfactory with respect
to both shape and position. It is necessary to use the proper
crystallographic value of s = 6 and allow for blocking.

Some experimental results for DfSH in the case of H
dissolved in Zr(bcc)[22] are shown in Fig. 10 as points.Whilst
the simple model of the influence of blocking on configura-
tional entropy gives a satisfactory explanation of the results
shown in Fig. 10, real alloy situations can be more complex.
Thus, whilst the nearest and next nearest neighbor sites seem to
be always blocked, the magnitude of the repulsive energy
between third nearest neighbors seems to be of the orderRT, the
effect of which is to cause a transition from third nearest
neighbor site blocking at low temperatures to just secondnearest
neighbor site blocking at higher temperatures,[23] a transition
which results in a Schottky-like heat capacity transition in V-H
alloys.[21] This change in the size of the hard core with
temperature presents extra difficulties for any physically
realistic analytical blocking modeling for these phases.

4. Modeling Configurational Entropy
in Multicomponent Solutions

All configurational solution models for solid alloys are
based on Ising-like models and, for these, Monte Carlo
(MC) simulations are very useful in that they can yield the
‘exact� properties for a given set of energy parameters in
those situations (most) where the exact result is not
amenable to calculation. With the ‘exact� results, it is then

possible to assess the relative merits of different analytical
models in their ability to reproduce the MC results using the
same energy parameters. Comparison of the different
calculated phase diagrams is a particularly useful way of
ascertaining the quality of the entropy approximations, and
this is the method of approximation assessment used here.

The most closely studied phase diagram by MC methods
is that for the order/disorder transformations in fcc alloys
when only constant nearest neighbor pair interactions are
involved, and we will concentrate on this example here. The
MC-calculated phase diagram for this system is shown as
points in Fig. 11. The noticeable features in this diagram are
the separated maxima for the L10 and L12 phases and a
value for the triple-point temperature between A1, L10 and
L12 phases of )RT/WAB � 1 (WAB is the pair exchange
energy defined by WAB ¼ eAB � 1

2 ðeAA þ eBBÞ, where eij is
the nearest neighbor bond energy).

4.1 The Bragg-Williams Approximation

In the Calphad modeling of alloy sublattice phases, the
Bragg-Williams (B-W) approximation is invariably used. In
this approximation, it is assumed that the different atoms
mix randomly on the sublattices where these exist or on the
principal lattice when the phase is disordered. The attraction
in using this approximation rests solely in its computational
advantage, since the point probabilities are used in the
minimization of the free energy functional.

The line diagram shown in Fig. 12 is obtained by using
the B-W approximation for the case of nearest neighbor
interactions on a four-sublattice fcc model.[24] It can be
seen, however, that the phase diagram calculated in this way
is vastly different from the ‘exact� one. In the B-W diagram
order/disorder transitions occur at too high a temperature,
there is no separation of the L10 and L12 maxima occurs and
no triple point is found. These differences are due entirely to
the neglect of short-range order (SRO) in the B-W
approximation. In order to correct for this limitation, extra
empirical parameters are used to fit the phase boundaries in

Fig. 10 Comparison of experimental and calculated values of
DSH for H in Zr(bcc) at 1,100 K. The solid curve was obtained by
Monte Carlo simulations[20] and allows for site blocking of both
nearest and next nearest neighbor T-sites; the dashed curve refers
to no site blocking with s = 1 and with the same value of DSH

o

Fig. 11 Comparison of the ‘exact� phase diagram with that
calculated using a modified Compound Energy Formalism for
fcc alloys with four sublattices
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binary systems; the validity of using these same parameters
for describing multicomponent systems seems questionable.

An alternative suggested approach is to use the modified
Compound Energy Formalism (CEF).[25-30] This reproduces
some of the effects of SRO, whilst not actually introducing it
(it continues to use the B-W approximation). A phase
diagram bearing a closer resemblance to the ‘exact� one can
be obtained through the medium of so-called reciprocal
sublattice L parameters, which give additional contributions
to the Gibbs energy. These parameters, of which there are 24
in total for a binary system, are permutations of terms like
yA
(1) yB

(1) yA
(2) yB

(2) yA
(3) yA

(4) L, where yP
(i) is the sublattice mole

fraction of component P on sublattice i. The effect including
these parameters is to alter the enthalpy and, if the
compound energies are temperature dependent, the non-
configurational entropy of the disordered phase more
strongly than they do for the ordered phase (for the fully
ordered stoichiometric phase, the reciprocal sublattice L
parameter contributions to G are zero). As can be seen in
Fig. 11, this results in making the disordered phase
relatively more stable, especially near the A3 B and AB
compositions, and hence lowers the disorder/order phase
transition temperatures relative to those in the original B-W
phase diagram. In doing so it also yields a phase diagram
with separated maxima for the L10 and L12 phases, although
one which is still some way off from having the topology of
the ‘exact� phase diagram at lower temperatures. It should
also be noted that, because of the increased stability of the
disordered phase, the enthalpy difference between ordered
and disordered phases is reduced from that normally
expected at an order/disorder transition. This problem is in
addition to the weak assumption of no SRO in the
disordered phase.

4.2 Higher-Order Approximations

In order to actually introduce SRO, it is necessary to use
some better approximation than the B-W in the calculation of

Sconfig. The most successful of the cluster methods has been
the Cluster Variation Method (CVM),[31] but we will discuss
others below. In all these cluster approximations, it is being
assumed that the atomic interactions, within a range longer
than the chosen basic cluster size, are negligible compared
with the short-range interactions. This does not mean,
though, that we need only consider a nearest neighbor pair
cluster in the calculation of the configurational entropy when
only nearest neighbor interactions are involved in the energy
representation. In general, the larger the cluster selected for
this purpose, the more accurate the calculated entropy. If, for
the case of nearest neighbor interactions in the fcc lattice, a
tetrahedron (T) cluster is selected in the calculation of the
configurational entropy, then Sconfig is given by

CVM; fcc; T-approxn: Sconfig ¼ 2S4 � 6S2 þ 5S1 ðEq 15Þ

The cluster and sub-cluster configurational entropies in
this and similar equations are given by

S4 ¼ �R
X

ijkl

pijkl loge pijkl ðEq 16Þ

pijkl being the cluster probability.
The second term in Eq 15 arises from the fact that, in the

CVM, the tetrahedra share edges, and this leads to an
overcounting of the total energy from the tetrahedra
probabilities in the first term. The last term ensures that
the total number of configurations is correct.

The use of the CVM T-approximation expression for
Sconfig results in a free energy functional for a binary system
which involves 24)1 = 15 variables. Either the cluster
probabilities or the correlation functions may be used in the
free energy minimization. Herein lies the weakness of the
CVM from the viewpoint of the materials engineer, viz., the
large number of independent variables in the free energy
functional when it is applied to multicomponent solutions.
The number of equations to be solved can be in the order of
Cn, where C is the number of components and n the number
of atoms in the cluster.

A different expression for the configurational entropy
results if it is assumed that the clusters are independent, i.e.,
share corners but do not share edges or faces. With this
quasi-chemical approximation (QCA), a two-term expres-
sion for the configurational entropy is obtained:

QCA; fcc; T-approxn: Sconfig ¼ S4 � 3S1 ðEq 17Þ

The number of functional variables, the cluster proba-
bilities, in using this equation is the same as that in using Eq
15. A considerable reduction in this number is possible,
however, by adapting the theory of gaseous atom/molecule
equilibrium due to Fowler.[32] Yang and Li[33-36] used this
approach (abbreviated to FYL below) to the site/cluster
equilibrium in solids. Briefly, if the equilibrium constant and
the atom/molecule mass balance are known, then the
Helmholtz energy can be expressed in terms of the atom
concentrations rather than the molecular concentrations. In
using this method for transforming from the cluster
probabilities to the site or point probabilities in a lattice
comprising four sublattices, Lagrangian parameters are
introduced as follows:

Fig. 12 Phase diagrams for fcc alloys with nearest neighbor
pair interactions only. The line diagram is calculated using the
B-W approximation; the points are the ‘exact� phase diagram cal-
culated using Monte Carlo methods
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mass balances, loge k1 y
ð1Þ
A ¼

P
jkl

pAjkl

loge k2 y
ð2Þ
A ¼

P
ikl

piAkl

loge k3 yð3ÞA ¼
P
ijl
pijAl

loge k4 y
ð4Þ
A ¼

P
ijk

pijkA

normalization, loge /
P

ijkl pijkl ¼ 1

The introduction of the FYL transform into the QCA
leads to the cluster/site approximation (CSA).[37,38] For a
binary system, the number of functional variables is
reduced, as is apparent from a comparison of the following
equations for the configurational free energy:

QCA F ¼
X16

ijkl

pijklðeijkl þ loge pijklÞ � 3
X

P;i

1

4
yiP loge y

i
P

ðEq 18Þ

CSA F ¼
X4

i¼1
yiA loge ki � loge /� 3

X

P;i

1

4
yiP loge y

i
P

ðEq 19Þ

The cluster partition function, /, for a binary system, is
related to the Lagrangian parameters through

/ ¼ k1k2k3k4 expð�eAAAAÞ þ . . . 15 other terms ðEq 20Þ

The equilibrium sublattice mole fractions are also
directly related to the Lagrangian parameters:

yiA ¼
1

/
@/
@ki

ðEq 21Þ

It can be seen from Eq 19 that FYL transform reduces the
number of equations to only in the order of C · S, where S
is the number of sublattices. This is just the same as when
using the B-W approximation.

Another cluster approximation should be mentioned.
This is the constant coupling approximation (CCA), a pair
cluster version of which was suggested originally by
Kasteleijn and van Kranendonk.[39] It was later generalized
and applied to T-clusters in bcc and fcc lattices by Bell.[40,41]

In this approximation, edge and face sharing of the
tetrahedra is permitted but, just as in the case of the QCA,
a two-term entropy representation is used. In the case of the
T-approximation for fcc lattices, Eq 15 is modified to

CCA; fcc; T-approxn: S ¼ 2S4 � 7S1 ðEq 22Þ

This equation may be used with cluster probabilities or, by
carrying out the FYL transform, with point probabilities, i.e.,
equations analogous to either Eq 18 or Eq 19 may be used.

Results from using the CVM, QCA and CCA in the T-
approximation are shown in Fig. 13 together with the MC
results. The three approximations give rise to three different
phase diagrams, with none of them being particularly close
to the ‘exact� one. It is clear why the QCA was discarded in
favor of the CVM. Although the QCA introduces SRO and

gives rise to the desired separation of the L10 and L12
maxima, it does not give a triple point between the A1, L10
and L12 phases in fcc alloys. It should also be noted that the
triple point calculated in the T-approximation from the CCA
is considerably poorer than that obtained from the CVM,
although even that is disappointing. It is for this reason that
larger clusters than the tetrahedron are recommended when
using the CVM, although these are unsuitable for use with
multicomponent systems.

In order to have the freedom of fitting to experimental (or
calculated) results, a modified CSA has been proposed.[38]

An adjustable parameter c4 with the dimensions of clusters
per site is used so that Eq 14 is modified to read

modified CSA Sconfig ¼ c4S4 � ð4c4 � 1ÞS1 ðEq 23Þ

The c4 factor may be either obtained from MC simula-
tions or, when dealing with real alloy systems in a
phenomenological calculation, it can be regarded as a fitting
parameter in the same way as are the energy parameters.
With a value of c4 ¼ 1:23 it is possible to obtain excellent
agreement between the modified CSA-calculated phase
diagram and the ‘exact� one, as is shown in Fig. 14.

4.3 Further Use of the FYL Transform

Recently, we have extended the use of the modified CSA
by considering the tetrahedron-pair cluster in fcc al-
loys.[42,43] Apart from its use of the empirical constant, c,
however, there is also the difficulty of finding corner-sharing
cluster polyhedra which embrace every site and every bond
in some lattices. It is much easier to find edge- and/or face-
sharing polyhedra as used in the CVM.

In an effort to try and overcome the limitations of the
modified CSAwe have also been exploring the possibility of
using the FYL transform more widely than used previ-
ously.[44,45] As an illustration, we mention its application to
the case discussed above, viz., to the T-approximation in fcc
lattices. The full expression for F in the CVM T-approxima-
tion for fcc latticeswhen using cluster probabilities is given by

Fig. 13 Comparison of phase diagrams calculated using differ-
ent configurational entropy approximations, all of which based
on the nearest-neighbor tetrahedron cluster in the fcc lattice
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CVM F ¼ 2
X16

ijkl

pijklðeijkl þ loge pijklÞ

� 6
X24

ij

1

6
pijðeij þ loge pijÞ

þ 5
X

P;i

1

4
yiP loge y

i
P ðEq 24Þ

If an FYL transform is used in order to remove the
tetrahedron probabilities, then the following expression for
F is obtained:

FYL� CVM F ¼ 2
X4

i¼1
ðyiA loge ki � loge /Þ

� 6
X24

ij

1

6
pijðeij þ loge pijÞ

þ 5
X

P;i

1

4
yiP loge y

i
P ðEq 25Þ

The tetrahedron probabilities can be obtained from the
Lagrangian parameters, e.g., for pAAAA:

pAAAA ¼
k1k2k3k4

/
expð�eAAAAÞ ðEq 26Þ

The pair probabilities may then be obtained from the
tetrahedron probabilities whilst the point probabilities can
be obtained from Eq 21. These derived probabilities may
then be inserted into Eq 25 and F minimized in terms of
only four functional variables. The resulting phase diagram
obtained from this procedure is shown in Fig. 15. It can be
seen that, although the calculated phase diagram is not as
good as that from a regular CVM calculation, it is
considerably better than can be obtained from the CCA
calculation.

Using the FYL transform in this way opens up the
possibility of using much bigger clusters whilst still having
only C · S functional variables. Its application to where

correlation functions are used instead of cluster probabilities
is also being explored.

5. Conclusions

• The phenomenological calculation of multicomponent
phase diagrams is important for technological design. In
order to be able to have the most confidence in the results
from such calculations, it is important that the modeling
equations used in the calculation of Gibbs energies for the
various phases possess a sound physical basis so that they
may be interpolated and extrapolated with some degree of
confidence. On the other hand, the models used must be
sufficiently simple that they are computationally eco-
nomic. Extra adjustable parameters are an accepted neces-
sity in these modeling equations. Their role is to allow for
any unidentified or inadequately described factors and
should, ideally, be both small and few in number.

• Entropies of mixing for binary solid alloys are frequently
large, both positive and negative, indicating significant
non-configurational contributions to the total entropy of a
solution phase. These non-configurational entropies cannot
be ignored in modeling.

• Configurational entropies can have a strong influence on
the domain of stability of a solution phase.

• Allowing for short-range order in solution models is desir-
able in order to minimize the number of extra-fitting
parameters required when the Bragg-Williams approxima-
tion is used. The great advantage of this approximation is
its utilization of the point variables in the free energy
functional mimimzation.

• Trying to modify the Bragg-Williams approximation in or-
der to mimic the effect of short-range order, whilst not
actually introducing it, is the least satisfactory way of
doing this.

• The cluster variation method is the most widely recog-
nized way of allowing for short-range order. Unfortu-
nately, it utilizes too many functional variables, the cluster

Fig. 14 Comparison of the modified CSA and ‘exact� phase
diagrams calculated using the T-approximation

Fig. 15 Effect of using the Fowler-Yang-Li method on the
calculated fcc phase diagrams in the T-approximation
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probabilities, for it to be of value in the calculation of
configurational entropies in multicomponent solutions.

• A Fowler-Yang-Li transform permits going from cluster
probabilities to point probabilities, just as in the Bragg-
Williams approximation. This results in the required large
reduction in the number of functional variables. The modi-
fied cluster/site approximation, which utilizes this ap-
proach, is one way of using this transform to point
variables.

• It seems possible that it will be possible to use the Fow-
ler-Yang-Li transform more widely than hitherto.
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